
 1

Some experiences in adding a new
language to SSQSA architecture – a

part of SSQSA front-end

Jozef Kolek, Gordana Rakić, Zoran Budimac

 2

Content

1. Introduction

2. Adding a Language

3. Some of the SMIILE Universal Nodes

4. Adding a Metric

5. Halstead Metrics

6. Conclusion

 3

Content

1. Introduction

2. Adding a Language

3. Some of the SMIILE Universal Nodes

4. Adding a Metric

5. Halstead Metrics

6. Conclusion

 4

Given Tasks

● Tasks
– To add new language to SMIILE - Delphi

– To add new metric to added language - Halstead

 5

Motivation

● Everyone who wants to use SMIILE for some
new language and for some new metrics, can
do this by following our guide.

 6

Content

1. Introduction

2. Adding a Language

3. Some of the SMIILE Universal Nodes

4. Adding a Metric

5. Halstead Metrics

6. Conclusion

 7

Adding a Language

● Steps

1) Find the specification of desired language (for
example generic EBNF grammar, which is also
most suitable to rewrite with ANTLR)

2) Rewrite given grammar with ANTLR

3) Add generation of CST to ANTLR grammar (rule
rewriting)

4) Add the SMIILE universal nodes (CST → eCST)

 8

Example of mentioned Steps
1) EBNF production

 UsesClause = "USES" UsedUnit { "," UsedUnit } ";" .

2) Corresponding ANTLR rule

 usesClause : USES usedUnit (',' usedUnit)* ';'

3) Same ANTLR rule with CST output (without any of universal nodes)

 usesClause
 : USES usedUnit (',' usedUnit)* ';'
 -> ^(USES usedUnit (',' usedUnit)* ';')

4) ANTLR rule with universal node (IMPORT_DECL)

 usesClause
 : USES usedUnit (',' usedUnit)* ';'
 -> ^(USES ^(IMPORT_DECL usedUnit)
 (',' ^(IMPORT_DECL usedUnit))* ';')

 9

Content

1. Introduction

2. Adding a Language

3. Some of the SMIILE Universal Nodes

4. Adding a Metric

5. Halstead Metrics

6. Conclusion

 10

Some of the SMIILE Universal
Nodes

● There are eight SMIILE nodes incorporated:
– COMPILATION_UNIT

– MAIN_BLOCK (main blocks)

– CONDITION (conditions of if, while, ...)

– BRANCH_STATEMENT (if, case, try)

– BRANCH (branches of if, case and try)

– JUMP_STATEMENT

– LOOP_STATEMENT (while, repeat, for)

– LOGICAL_OPERATOR (and, or, xor)

 11

Jump Statements

● Few standard procedures of Delphi are added
to act as keywords (exit, continue, abort,
runerror, break and halt)

● This is because they can also change the flow
of the program and we have to mark them as
jump statements (JUMP_STATEMENT).

● And this must be done at syntax level.

 12

Content

1. Introduction

2. Adding a Language

3. Some of the SMIILE Universal Nodes

4. Adding a Metric

5. Halstead Metrics

6. Conclusion

 13

Adding a Metric

● Steps

1) Analize what new nodes are needed

2) Add new nodes to existing ANTLR grammar as
described before

3) Generate the lexer and parser

4) Traverse the tree of the parser, use incorporated
universal nodes and calculate the metrics

 14

Content

1. Introduction

2. Adding a Language

3. Some of the SMIILE Universal Nodes

4. Adding a Metric

5. Halstead Metrics

6. Conclusion

 15

Halstead Metrics

● Measures program's complexity directly from
source code.

 16

Metric Calculation Phases

Generated eCST

Lexer and Parser

Source Code

Halstead Algorythm

Output

 17

Generated eCST

CONCRETE_UNIT_DECL

H_KEYWORD

USES

IMPORT_DECL

NAME

SysUtils

H_SEPARATOR

;

 18

Halstead Metrics Evaluation

● While traversing the tree Halstead algorythm
must count total and distinct number of
occurrences of operators and operands.

● Operators:
– keywords,

– operators such as “+” and “-”,

– separators

● Operands:
– names, constants, types and directives.

 19

Halstead Metrics Evaluation

● While traversing the tree Halstead algorythm
must count total and distinct number of
occurrences of operators and operands.

● Operators:
– keywords,

– operators such as “+” and “-”,

– separators

● Operands:
– names, constants, types and directives.

 20

Halstead Metrics Algorythm

1) Compute the following:
● n1 - the number of distinct operators
● n2 - the number of distinct operands
● N1 - the total number of operators
● N2 - the total number of operands

2) Calculate the measures:
● Program vocabulary: n = n1 + n2
● Program length: N = N1 + N2
● Program volume: V = N * log2(n1 + n2)
● Program level: L = (2/n1)*(n2/N2)
● Program difficulty: D = (n1/2) * (N2/n2) = 1/L
● Programming effort: E = D * V
● Programming time: T = E/18 seconds
● Intelligent content: I = V / D

 21

Output

Description Value

Distinct Operators (n1) 63
Distinct Operands (n2) 101
Total Operators (N1) 743
Total Operands (N2) 338
Program Vocabulary (n) 164
Program Length (N) 1081
Program Volume (V) 7953.5137
Program Level (L) 0.00948624
Program Difficulty (D) 105.41584
Programming Effort (E) 838426.3
Programming Time (T) 46579.24
Intelligent Content (I) 75.448944

 22

Halstead Metrics

● For purpose of Halstead Metrics we have
introduced few new universal nodes:
– Operators: H_KEYWORD, H_OPERATOR,

H_SEPARATOR;

– Operands: H_TYPE, H_DIRECTIVE, H_CONST.

● To count identifiers as operands the NAME
universal node is reused.

● Every one of these Halstead universal nodes
has exactly one child.

 23

Example of modified usesClause rule

usesClause
 : USES usedUnit (',' usedUnit)* ';'

 → ^(H_KEYWORD USES)
 ^(IMPORT_DECL usedUnit)
 ^(
 ^(H_SEPARATOR ';')
 ^(IMPORT_DECL usedUnit)
)*
 ^(H_SEPARATOR ';')
 ;

 24

Example of the Tree traversing

● To count distinct names we are using
corresponding universal nodes (such as
VAR_DECL and FIELD_DECL) in generated
syntax tree, so every place in the tree where
new declarations of names can be found is
investigated and this names are added in the
list of names.

● At the end we just count how many elements
in this list we got.

 25

Content

1. Introduction

2. Adding a Language

3. Some of the SMIILE Universal Nodes

4. Adding a Metric

5. Halstead Metrics

6. Conclusion

 26

Conclusion

● This was typical example that eCST is very
flexible and extensible.

● That means eCST can be used in some other
project with minor or none modifications.

● Or it can be extended with totally new nodes
to satisfy various needs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

